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A simple approach to the problem of light localization in one-dimensional system is presented. The role of
the Bragg reflection in one-dimensional localization of light is discussed. Contrary to the existent viewpoint,
we show that the origin of band gaps of regular crystals and the localization due to disorder have a common
nature, that is, the Bragg reflection. We expand the concept of band structure to random systems of finite
thicknessL and relate the Anderson localization of light with the total band gap growth, which is observed in
our computer simulation of disordered system, asL increases.
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In quantum mechanics(QM) it is well established[1–3]
that in a one-dimensional case one-particle wave function is
localized in any infinite disordered system. The similarity of
the Schrodinger and Maxwell equations suggests that light
should be also localized in a one-dimensional disordered sys-
tem. This has been confirmed in computer simulations[4]. It
is worth mentioning that often the concept of localization has
different meaning in QM and in optics. In QM[3] when
dealing with the eigenvalue problem localization is under-
stood as the existence of a special solution to the stationary
Schrodinger equation. This solution decays on average expo-
nentially with distance from a certain bounded domain in
space, which is a characteristic of the particular energy and
system realization. Optics considers, as a rule, a scattering
problem and understands by light localization the total re-
flection from semi-infinite space filled by disordered medium
[1]. In the mathematical language the difference between
these definitions lies in the application of different boundary
conditions. The reason for employing the QM results in op-
tics or even in a QM scattering problem is that the QM
definition implies that the localized wave function weakly
depends on boundary conditions[2].

However, the situation is fraught with a conflict. The con-
sideration of a one-dimensional photonic crystal with a
single defect[5] has shown that in the infinite photonic crys-
tal inside the band gap there appears a defect mode with field
distribution satisfying the QM definition of localization.
Thus, at frequency of the defect mode the light is localized in
the infinite system. On the other hand, any finite sample of
the crystal with a defect in the middle is nothing more than a
Fabry-Perot filter where two fragments of the photonic crys-
tal form the dielectric mirrors. The system is transparent at
the very frequency of the defect mode at any system size.
Hence, in terms of the optical definition of localization, the
light wave is delocalized in such a system.

Moreover, there are special boundary conditions under
which the light localization does not take place in any one-
dimensional disordered system at all. To illustrate this state-
ment, we use theT-matrix language. AT matrix relates pha-
sors of incident and outgoing waves on both sides of the

layer. TheT matrix of two layers is equal to the product of
theT matrices of these layers. A set of allT matrices forms a
group [3]. Hence for any given finite sample of any one-
dimensional disordered system we can find a finite sample
(this sample may belong to another ensemble of random sys-
tems) that has aT matrix, which at a given frequency is
inverse to theT matrix of the initial sample. The system of
these two samples is absolutely transparent. It is the bound-
ary conditions realized between the samples that warrant the
absence of localization in the initial sample.

So, we have to be careful about recruiting the QM results
in optics. This adoption is aggravated by the formal character
of the existing reasoning proving the fact of localization in
QM [3]. The most rigorous proof[3] is based on Fursten-
berg’s theorem[6] and may be reduced to the statement that
all solutions (with probability 1) of the involved random
equations have “the exponential growth.” Unfortunately, the
physical reasons of this exponential growth do not follow
from Frustenberg’s theorem. The abstract form of Ishii’s con-
structions in Ref.[3] often hinders physicists from applica-
tion of the results(see, e.g., Refs.[7,8] devoted to delocal-
ization due to the correlated disorder where the results of
Ref. [3] are ignored). As a clear physical pattern of wave
localization is necessary, a search for new arguments and
interpretation continuous(see, e.g., Refs.[5,9–12]).

In this respect it is necessary to mention the papers con-
sidering a transfer from regular photonic crystals to disor-
dered systems[13–16]. Being based on the results of these
works but contrary to their conclusion[16] that the band gap
in crystals and localization in random media are phenomena
of different nature[17], we state that it is the Bragg reflection
that is responsible not only for the appearance of band gaps
but also for the Anderson localization of light in the one-
dimensional case. We use theT matrix language because it
can describe both scattering and eigenvalue problem. So the
results obtained in terms ofT matrices language are of the
universal character.

Any random system and, what is even more, its finite part
are not translationally invariant. Thus, a direct, mathemati-
cally rigorous application of the band theory is impossible in
these cases. To attribute a band structure to any finite system,
we build up a periodic system that has this particular finite
system as a primitive cell. A band structure of the periodic
system is regarded as the associated band structure of the*Fax: (7 095) 484 26 33. Email address: a-vinogr@yandex.ru
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finite system. If there exists a band structure while the primi-
tive cell size tends to infinity, such a band structure can be
ascribed to the proper infinite system.

Below, we assume all elementary layers to be of an iden-
tical thicknessd. This restriction is not a determinative one
but it is taken to simplify our speculations and computer
simulation because it permits us to deal with impermeable
ingredients only. Indeed, the dispersion in the permittivity
values guarantees dispersion in both optical paths and im-
pedance values. We treat only the normal incidence of
waves.

The field in each layer is a sum of the left-going and
right-going waves. Employing continuity of the electrical
and magnetic fields at the interface surfaces the amplitudes
Aj+1,Bj+1, andAj−1,Bj−1 of such waves in the layers adjacent
to the j th layer can be linked with aT matrix. Let us intro-
duce an auxiliary vacuum layer of the zero thickness be-
tween any adjacent layers. As theT matrix of this layer is
equal to the identity matrix, this layer is of no significance.
Now, theT matrix of the j th layer depends on its own(and
vacuum) properties only. In the general case, after extracting
the Jordan form theT matrix of a primitive cell can be writ-
ten as

Tcell = ScellJScell
−1 = ScellIeikef fLcell 0

0 e−ikef fLcell
IScell

−1 , s1d

where theScell matrix depends on the cell structure. TheT
matrix of a system containingM of identical primitive cells
has the form(1) with Lcell substituted by the system sizeL
=MLcell. So,kef f could be regarded as the sought wave num-
ber. As TrsSJS−1d=TrsJd [19] the dispersion equation can be
written employing the trace ofTcell [20]:

Tr sTcelld = Tr sJd = 2 cosskef fLcelld. s2d

For the simplest primitive cell built up of two elementary
layers with different values of permittivity, Eq.(2) yields the
well-known result[21]:

2 cosskef f2dd = Tr sTcelld

= 2 cossk0
Î«1ddcossk0

Î«2dd − sÎ«1/«2

+ Î«2/«1dsin sk0
Î«1ddsin sk0

Î«2dd, s3d

with k0=v /c. Equation (3) predicts the existence of
band gaps whereuTrsTcelldu.2 andkef f is a pure imaginary
quantity. The imaginary part ofkef f is usually referred to
as the Lyapunov exponentgTr=Imskef fd=Imharccos
3fTrsTcelld /2gj /L.

Let us trace the development of a band structure as the
construction of a primitive cell becomes more complicated.
The complication of a primitive cell implies an increase in
the number of its elementary layers. The complication can be
achieved by various methods. We can introduce new types of
elementary layers having different values of permittivity or
simply combine several neighboring cells and intermix the
available elementary layers. Now, for comparing systems
with different Lcell we follow the second way. In fact, a
simple joining of the neighboring cells of a regular system
cannot lead to any new physical consequences. However,

after mixing the order of the elementary layers inside a new
supercell, additional frequency gaps appear where TrsTcelld
exceeds 2(see Fig. 1). Unfortunately, the increase of the
number of band gaps is accompanied with a decrease in the
gap width. Thus, we cannot directly identify this increase
with the rise of the degree of localization in the system. We
have to look at the total width of all the gaps.

In our computer simulations(Fig. 2), we calculated the
fraction (measure) of frequencies at which the Lyapunov ex-
ponent is equal to zero

t = lim
K→`

H 1

K
E

0

K

f1 − signhgTrsk0djgdk0J .

The measure of the band gaps is equal to 1−t. As we can see
from Fig. 2, the measure decreases with an increase in the
thicknessL of a random system. For fairly thick systems
almost all frequencies lie in the frequency gaps. It is reason-
able to regard this fact as localization, identifying 1/gTrsk0d

FIG. 1. The dependence of Tr(T) of six-layer supercells on fre-
quency. In the first cell(solid line) « takes the values of 2,7,2,7,2,7,
in the second cell(dot line) « takes values 2,7,7,2,7,2.

FIG. 2. The dependence of the measure of bands of transparency
on the thicknessL of the primitive cell. The permittivity«
equiprobably takes values from the intervalf2,3g.
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with localization length. This definition of the localization
length coincides with the common one[1]

Lloc = gloc
−1 = − lim

L→`

L

klnutul
, s4d

where t is the transmission coefficient, and the brackets in-
dicate ensemble averaging. Indeed, theT matrix of any
sample can be expressed in terms of the reflection coeffi-
cientsrR andrL corresponding to the right-incident and left-
incident waves, as well as through the transmission coeffi-
cient t (because detT=1, the value oft is independent of the
direction of incidence[22]):

T = (St −
rRrL

t
D rR

t

−
rL

t

1

t
(

and TrsTd= t+s1−rRrLd / t. Taking into account thatgTr

=ImharccosfTrsTcelld /2gj /L gives

gTr = HlnS1

t
D + lnF1 − rRrL + t2

2

+ÎS1 − rRrL + t2

2
D2

− t2GJY L. s5d

In a realization where the localization occurs atL→` we
haveutu! urRu,urLu,1 but urRrL−1u,1 [23]. Comparison of
Eqs.(4) and (5) reveals thatgTr→gloc.

In our approach the frequencies at which the system is
transparent lie in the bands of the associated band structure.
Though the measure of the bands tends to zero their number
Nbands tends to infinity[24]. To understand what happens to
the waves at these frequencies we evaluate the maximum
value of the group velocity inside the bands.

For a fixed frequency domainDv the Nbands is OsLd and
the distance between neighboring bands is aboutDv / sL /dd
[24]. Coming back to Fig. 1 we can evaluate the derivative of
TrsTd inside a band as the ratio of the maximum value of the
TrsTd in the adjacent band gaps to the frequency distance
between the bands. Taking into account that maxgapfTrsTdg
,exp sgTrLd, where we can use the value ofkgTrsk0dl aver-
aged over ensemble, we can evaluate the derivative as

1

d

d

dk0
Tr fTsk0Ldg =

1

d

d

dk0
2 cosskef fLd

= −
dkef f

dk0

L

d
sin skef fLd

,
L

d
exp skgTrsk0dlLd.

Ultimately ygr=csdk0/dkef fd,sin skef fLdexp s−kgTrsk0dlLd
that vanishes asL→`. Thus, we see that in spite of
gTrsk0d=0 the wave cannot transfer energy. In this sense light
is localized at any frequency.

The proposed band theory partly agrees with conclusions
of work [25] that the Fourier harmonic of refractive index
that satisfies the condition of the Bragg reflection plays a
special role in the wave localization. Namely, confining to
this harmonic the authors of Ref.[25] obtain an evaluation of
the Lyapunov exponent, which coincides with the classical
perturbative result[26]. It may seem that it is an infinitely
expanded structure underlying the distribution of inhomoge-
neities (the Bragg harmonic) that determines whether the
light is localized[25] or not [27].

Our scrupulous examination of the changes in light am-
plitude related to depth in the disordered system shows that
the amplitude attenuation happens in accidentally shaped
short segments having high value of the Lyapunov exponent
(the Bragg reflectors). The rest of the layers plays no role in
light localization[28]. Therefore, there is no need in a very
long array of layers to attenuate the wave because a single
Bragg reflector successfully does this.

To verify our hypothesis we have considered a realization
of the lengthL=20 000 and test one layer after another to see
whether this layer together withM −1 foregoing layers build
up an M-layer Bragg reflector. If it happens we randomly
change the permittivity of the layer until the Lyapunov ex-
ponent of anyj-layer cells j øMd ending by the layer under
consideration becomes equal to zero. Thus, after considering
all layers we obtain a system that has the Bragg reflectors of
a length greater thanM only. We watch a decrease in the
Lyapunov exponent of the whole resulting system as we suc-
cessively perform the procedure increasingM from 2 to 50
(see Fig. 3). The dependencegsMd given in Fig. 3 is a result
of averaging over 200 random realizations. We can see that
not only gsMd but also the variance ofgsMd tends to zero.
This fact permits us to say that removing the Bragg reflectors
makes the system transparent. In so doing we get a random
system which may have long-range correlations(at least of
sizeM). In the literature there are many examples of systems
with correlated randomness[11] where the waves are delo-
calized. A simple analysis shows that in these systems there

FIG. 3. The dependence of the Lyapunov exponent(solid line)
and its variance(dot line) on the sizeM of the Bragg reflectors
which have been randomly transformed to segments without Bragg
reflectors.
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are no Bragg reflectors too. We see that the existence of
Bragg reflectors is a necessary condition for localization.

We relate the effect of wave localization with the effect of
the total growth of band gaps in the associated band struc-
ture. This makes evident why the majority of the solutions
have the exponential growth. These band gaps are real band
gaps with the zero density of state. The localized states come
about from bands of transparency as the system size comes
to infinity. At the same time the frequency width of these
bands as well as the group velocity of the states come to

zero. The latter property permits us to consider these states
as localized ones.
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